4. DIAGONALISATION
REVISITED

84.1. Eigenvalues and Eigenvectors

Recall that an eigenvector v for a matrix A is a non-zero
vector where Av = Av for some scalar A. The scalar A is
called the corresponding eigenvalue. The characteristic
polynomial of A, denoted by xa(A) is |Al — Al and its
zeros are precisely the eigenvalues of A.

The r’th trace of the n x n matrix A is the sum of all the
r x r sub-determinants whose diagonal coincides with that
of the whole matrix. It is denoted by tr(A) and is the sum

n . : :
of (r) r x r determinants. Special cases are tr;(A), which
IS just the trace, tr(A) and tr,(A) which is |A|.

Then ya(A) =
AN — tr(A)AMT + tr(A)AT? — trs(A)ATH + L+ (1)TA).
This is by far the easiest way to compute ya(L). Solving

xa(L) = 0 gives the eigenvalues and, for each one, the non-
zero solutions give the corresponding eigenvalues.

If Aisan n x n matrix and S = (v1, V2, ..., Vn) IS an
invertible matrix whose columns are eigenvectors, where

Avi = Aivj, and D = diag(A4, A, ..., An) then A=SDS and
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we say that A is diagonalisable. In such cases {vi, vz, ...,
vn} will be a basis of eigenvectors for A.

We can extend these concepts to linear transformations.
If f:U — V is a linear transformation between two vector
spaces, over the field F, and v is a non-zero element of U
such that f(v) = Av for some A € F then v is called an
eigenvector for f and A is the corresponding eigenvalue.
This agrees with our previous definition by considering
the linear transformation f(v) = Av, but it makes sense
when there’s no obvious matrix in the picture.

Example 1: Let U be the set of differentiable functions of
one real variable x and let V be the space of all real
functions of one real variable x, both considered as vector
spaces over R.

Let D:U—YV be the linear transformation D(f(x)) = d(fj;( :

df
Jd)? = A(x)

for some A e R. Clearly the eigenvectors are the
exponential functions, or more properly, the non-zero
multiples of the exponential functions. For any real A the

functions f(x) = Ce, for any C = 0, are eigenvectors for

D, with the real number A being the corresponding
eigenvalue.

An eigenvector is a function f(x) such that
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Example 2: Let V be 3-dimensional Euclidean space,
over R. Let © be any plane in V that passes through the
origin. Then reflection in = is a linear transformation, M.
The eigenvalues are 1.

For A = 1 the eigenvectors are the non-zero vectors in
because these are fixed by the reflection.

For A = —1 the eigenvectors are the non-zero vectors that
are perpendicular to the plane.

You shouldn’t have your thinking about eigenvalues
dominated by the equation |Al — A| = 0. True, if you’re
given an n x n matrix, this is usually the best way to find
its eigenvalues. And once you’ve found the eigenvalues
you can then find the eigenvectors. But there are some
matrices where it’s easier to find the eigenvectors first,
and then the eigenvalues.

But when you have to find the eigenvalues and
eigenvectors of a linear transformation that isn’t given by
a matrix then |Al — A| won’t make sense. How could you
use determinants in example 1 or example 2? Of course
we can always put in a basis, and represent the linear
transformation by a matrix, but this is a long-winded way
of going about it. Always think first of the equation f(v)
= AV,
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If you have a linear transformation f:VV — V on a finite-
dimensional vector space V, the nicest basis, if such a
basis exists, would be a basis of eigenvectors. For, if o =
{v1, ..., vn} is a basis of eigenvectors for the n x n matrix
A, with corresponding eigenvalues Ay, ..., An then the
matrix of f relative to this basis is simply the diagonal

M 0.0

) 0OA...0
matrix D = 2

0 0 ..A\p

But if the linear transformation is f(v) = Av it will be
expressed in terms of the standard basis 3. To reach the
diagonal matrix we simply need a change of basis.

IfS= {%} then
o8] g <o

Of course, in order to get a basis of eigenvectors, we need
to have the full complement of eigenvalues. In other
words the characteristic polynomial must split completely
into linear factors over the field. This will always be the
case if our field is C, the field of complex numbers. But
even if the characteristic polynomial splits completely we
may still fail to get a basis of eigenvectors.
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7 2 -1

Example 3: Let A = (—3 2 4}. The characteristic
—2-211

polynomial is (A — 10)(A — 5)2.

2 2 -1 2 2 -1 1 1-3
ButA-51=|-3-34 | >|-3-34 | >|2 2-1
—2-26 1 1-3 -3-3 4

11-3 11-3
—|1005 | - |00 1 |sotheeigenvectors for A =5are

00-5 000
1
all scalar multiples of | =1 {. The dimension of the space
0

of eigenvectors for the eigenvalue 5 is just 1, even though
5 is a double zero of the characteristic polynomial. The
space of eigenvectors for A = 10 also has dimension 1.
Hence there’s no basis of eigenvectors for R3. The
eigenvectors only span a 2-dimensional subspace.

84.2. Eigenspaces

If A is an eigenvalue for the matrix A then the
corresponding eigenspace is: EA(A) = {v | Av) = Av}. If
A is an eigenvalue the dimension of Ea(A) must be at least
1. The total eigenspace is the space spanned by all the
eigenvectors and is denoted by Ea.

We can extend the concept of eigenspaces to linear
transformations, but for now we’ll concentrate on
matrices.
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Theorem 1: The n x n matrix A is diagonalisable if and
only if dim Ea =n.
Proof: dim Ea = n if and only if there is a basis of
eigenvectors. %©

Theorem 2: The total eigenspace is the direct sum of the
individual eigenspaces.

Proof: Suppose the distinct eigenvalues of the n x n

matrix A are A, ..., Ak

For each r let vi € Ea(Ar). Then Av, = Av.

Suppose vV = X3v1 + ... + Xkvk = 0.

For each r let:

Ar=(A-MD ... (A=Xr—1D(A = Ar+1D) ... (A = Al).

That is, Ay is the product of the factors A — Al for all s

except for s =r. Then:

AV = X1AV L X1 AV F XAV L XAV
=0.

Hence xrArvr = 0 because all the other terms are zero.

But Avvr = (Ar— A1) ... (A= Ar—1) (Ar — Ars1) ... (M = A Vr

= 0.

It follows that x, = 0.
Hence Ea = EA(7\,1) D...D EAO\,k). %@

18-4
Example 4: LetA=| 8 1 4 |,
44 7
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va(h) = |Al = Al = (L —9)%(A + 9) so the eigenvalues are +
9, with 9 being a repeated eigenvalue.

EA(9) is the null space of

-8 8 4 2-21
A—9I:(8 -8 4j—>(0 0 Oj.
—4 4 — 000
1) (-1
Hence EA(9) = {1}{0} :
0)2

Ea(-9) is the null space of

10 8 4
A+9l=| 8 10 4

—4 4 16

—>

1
5
4
1- 1-1-4
0 (0 1 2)
0 000
-1 2
Hence Ea(-9) = [ J> Since [1} LOJ, [2} are
2 1

linearly independent. The quickest way to show this in
2

this case is to observe that { 2} Is orthogonal to the other
1

two and so they are linearly independent and hence
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Ea = Ea(9) ® EA(-9). Hence Ea has dimension 3 and we
have a basis of eigenvectors. It follows that A is
diagonalisable.

84.3. Types of Diagonalisable Matrices

A square matrix is diagonalisable if and only if it has a
basis of eigenvectors, or equivalently if every vector is a
sum of eigenvectors. In many cases it is possible to
conclude that the matrix is diagonalisable because of
other properties.

Theorem 3: An n x n matrix is diagonalisable if it has n
distinct eigenvalues.
Proof: If the eigenvalues are A4, ..., An then:
EA = EA(7\.1) D...D EAOLn)
and so dim(Ea) = n. %©

A projection matrix is one that satisfies the equation:
AZ=A,

Example 5: Suppose that A is a 3 x 3 real matrix
satisfying A? = A. Then it will be the matrix of a
projection onto a plane in R®. Projecting a point twice will
be the same as projection it once.

The eigenvalues of Aare the zeros of A2 — 2,

that is, 0 and 1.

Ea(1) is this plane ( points on the plane are fixed by the
projection).
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EA(0) is the line perpendicular to that plane.

Theorem 4: Projection matrices are diagonalisable.
Proof: Let A be a projection matrix.
Any vector v can be expressed as:

v=(v—-Av)+Av.
Clearly v — Av € Ea(0) and Av e Ea(1), so the
eigenvectors span the whole space. %©

A matrix A has finite order mif A" =1.

Theorem 5: Matrices over C of finite order are

diagonalisable.

Proof: Let A be an n x n matrix over C such that A™ = I.

Let © = e2®'™ and let v be any vector in C".

Then 1+ 0"+ 0> + ... + 0"™D is the sum of a geometric

progression and so, if 6" = 1, this is:
om_1 _ (em)r_l_
0'-1 0 -1 =0.

Then mv ~

=(v+ OAvV+ 02Ax + ..+ ™1AM L)

+(v+ 0%Av+  0A% + ... +0AMDAM-Ly)

+(v+0M LAY + 02M DAy 4+ p(M-DZAm-1y)
+(v+ Av + AW+ ...+  A™l),

_/
This is because the sum of each column, except the first,

is zero. The sum of the r’th column is
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(1+0"+0%+...+0 M)AV =0whenr>1.

Now A(V + 8TAV + 07A%y + ... + gM-Dram-1y)

= AV + 'A%y + .. + pM-2rAm-1y 4 gm-Liramy,

= Av + 0"AN + ...+ pM-ArA™-Ly 1 gTy

=07V +Av +0'AN + ...+ pM2Arpam-1y

=07"(v+ 0"Av + XAy + ... + oM-Dram-lyy
Hence each term in the expression for v is an eigenvector,
and so every vector is a sum of eigenvectors. % ©

Example 6: If A* = | show that A is diagonalisable.

Solution: Every vector can be expresses as

V=Y4[(v—Av)+ (V-IAv) + (v+ Av) + (Vv + 1AV)]
€ Ea(l) + Ea() + Ea(-1) + Ea(-i).

The following is an alternative proof of the above
theorem. It’s interesting that this proof uses some
elementary calculus, including the Fundamental Theorem
of Calculus.

Lemma: Let 6 = g™k
1,1 .1 1 nx"1
X-1 x-0 x-02 " x_pv1  x"_1°
Proof: The integral of the LHS is
log(x — 1) + log(x — 0) + log(x — 62 + ... + log(x — ")
= log[(x — 1)(x — 8)(Xx — 6?) ... (x — 0" )]

Then
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= log(x" — 1) because of the above factorisation.
nXn—l

xX"—1"

By the Fundamental Theorem of Calculus the derivative

of the integral of the LHS is the LHS itself, and so the
result follows.

Differentiating we get

Forr=0,1,2,...,n-1define:

X" -1

Xx—0""

This has degree n — 1 and is the product of the terms x —
0! for all t except fort=r.

er(X) =

Alternative proof of Theorem 5:
Suppose A is an n x n matrix over C where A™ =1,
The eigenvalues of A are the m-th roots of unity:
1,0,0% ..., 0™ L where 0 = g2m/m
From the second lemma we get:
eo(A) + ei(A) +ex(A) + ... +en1(A) = nAML,
Clearly A is invertible and so:
nl = A" [eg(A) + e1(A) + ex(A) + ... + en-1(A)].

Let v be any column vector with n components.
Then (A — 0"1)(Al "er(A)V)

= AMA - 1A -0DA-02) ... (A-0"1)v

= A"(A" - 1)v

=0.
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It follows that, for all r, A1™"e,(A)v is an eigenvector for
the eigenvalue 0", or it is zero.

Now nv = Al e(A)v + Al e (A + ... + Al en1(A)v
and so v is a linear combination of eigenvectors for A.
The eigenvectors thus span the whole space and so A is
diagonalizable. % ©

Example 7: Suppose A3 = 1.
The eigenvalues are 1, » and »?.
eo(X) = (X — @)(X — @?),
e1(x) = (x — 1)(x — w?) and
e2(X) = (x - 1)(Xx — o).
So 3A% = (A — ol)(A — ®?1) + (A - I)(A — »?l)
+(A-1DA-ol)
which means that every vector v can be expressed as

V=2 AA - of)(A— o)V + 3 A(A - 1)A - o)V

+ % (A - I)(A - ol)v.

A cyclic matrix is one of the form

d; d> ... dn
an a1 an—]_
d> dz ... adi

As you move down the rows, the row moves to the right,
and wraps around to the beginning.
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1
4 : : :
Example 8: 3 Is a cyclic matrix.

AP EFEP DN W

234

123

41 2

341

Theorem 6: Cyclic matrices are diagonalisable.
d; d> ... anp

Proof: Let A=| &0 8 -~ 8n-1| 54 Jet g = g20/n

do dz ... di

Then for all r,
1 1
0 o
Al 07 [=(a+ad+..+a,00D)| 6
(1) (1)
1
er

It follows that each 02" | is an eigenvector for A.
or(n-1)

1

el’
The determinant whose r’th column is | 6% |is a

o)
Vandermonde determinant (1, 6, 62, ..., 0"1).
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Since 1, 0, 62, ..., ™! are distinct this Vandermonde
determinant is non-zero and so its columns are linearly
independent. Hence there’s a basis of eigenvectors. %©

84.4. Normal Matrices

Let A be a square matrix over C. We define A" to
be the ‘conjugate-transpose’ of A. That is, if A = (a;;) then

A" = ().

E le 9 |fA—[l+i 21 ]f' dA*

Xampe : = 4+3| 6—5| N )
L (1-i 2+ T_(l—i 4—3ij

So'“t'on'A‘(4—3i 6+5i) = 2+i 6+5i)

We call A" the adjoint of A. But beware. There’s another
‘adjoint’ that’s sometimes used in finding inverses. That
we denoted by adj(A).

Theorem 7:

(1) (A+B)" =A"+B"

(2) (AA)" = AAT

(3) A™ = A;

(4) (AB)" =B"A".
Proof: (1) — (3) are obvious.
(4) Let A = (a;) and B = (bj).

Then (AB)" = (AB)" = (A B) =BT AT=B"A". #©
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If we use the standard inner product on C", where (u | v)
= u”v then we have the following fundamental property
of adjoint.

Theorem 8: (Au | v) ={u | A"v) forall u, v.
Proof: (Au | v) = (Au)'v=U"A"v=(u|A'v).

A normal matrix is a square matrix A, over C, such that
AA* = A* A. That is, it commutes with its conjugate
transpose. There are several special types of normal
matrix.

A Hermitian matrix is one where A* = A. This includes
real symmetric matrices. Clearly Hermitian matrices are
normal since A commutes with itself.

A unitary matrix is one whose conjugate-transpose is its
inverse, that is, A is unitary if A" = A=, or in other words,
if AA* = I. Unitary matrices are normal since every
invertible matrix commutes with its inverse. A real
unitary matrix is called an orthogonal matrix. Here A™
=AT,

The columns of a complex matrix are orthonormal
(mutually orthogonal and each of unit length) if and only
if the matrix is unitary (similarly for rows). Hence if a
matrix A has an orthonormal basis of eigenvectors it is
diagonalisable. The corresponding eigenmatrix S is
unitary and so A = SDS*.
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A matrix A is defined to be skew-Hermitian if A* = -A.
Clearly skew-Hermitian matrices are normal. A real
skew-Hermitian matrix is called skew-symmetric. It has
the property that AT = — A,

We can summarise the definitions of these special types
of normal matrix as follows. We also provide 2 x 2
examples of each. The first example is of a normal matrix
that doesn’t fit into any of these special categories.

NAME DEFINITION | EXAMPLE
Normal matrix AA* = A*A 1+i 0]
0 i
Hermitian matrix |A*=A 3 1 —2ij
1+2i -1
Skew-Hermitian A* = —A 3 1- ZiJ
matrix -1-2i i
Unitary matrix A* = Al 1+i 1
2 42
1-0 1
2 A2

For a real matrix we use different names.
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NAME DEFINITION | EXAMPLE

Real symmetric | AT=A 3 -2
matrix —2 —1)
Real skew- | AT=—A 0 —2)
symmetric matrix 2 0

Orthogonal matrix | AT=A"! 1 1
V2 2
1 1
N2 A2
Theorem 9: A square matrix over C is a normal matrix if
and only if there exists a unitary matrix U and a diagonal
matrix D such that A = UDU*.

Proof: Suppose A = UDU*. Then A* = UD*U*,

So AA* = UDU*UD*U* = U(DD*)U*.

But D, D* are diagonal matrices so DD* = D*D.

Hence AA* = U(D*D)U* = (UD*U*)(UDU*) = A*A.
%O

We now prove a number of properties of normal matrices.
Theorem 10: Suppose that A is a normal matrix. Then

Ea(L) < Eax(R).

Proof: Letv € Ea()).

Then (A*v — Av | A*v — Av) = (A*v | A*V) — (Av | A*V)
—(A*V| W)+ { W] AV)
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= (V| AA*V) — MV | A*V) —
MARY [ V) + AV V)

= (v | A*AV) — MAV | V) —
MV | AVY + ANV VY

= (AV | AV) — LWV | V) — MV
| AV) + AMV V)
OV | W) — AV | V)

— MV V) + ANV VY - -
AV | VY = AV | V)
0.

Hence A*v —Av=0and so v € Ea+(%). % ©

Theorem 11: Suppose that A is a normal matrix. Then
eigenvectors corresponding to different eigenvalues are
orthogonal.
Proof: Letv € Ea(A) and w € Ea(n) where A = .
Then A{v | w) = (Av | w)

=(AV|w)

= (v | A*w)

=(v | pw) = v [ w).
Since A = pthen (v |w)=0. %©

Theorem 12: Suppose that A is a normal matrix. Then Ea
has an orthonormal basis of eigenvectors.
Proof: Let the distinct eigenvectors of A be A4, ..., A
Then Ea= EA(7\,1) + ...+ EAO\«k)
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For each i choose an orthonormal basis for Ea(Ai) and take
the union of these bases. By Theorem 11 this basis will be
an orthonormal basis of Ea. %©

Theorem 13: Suppose that A is a normal matrix and let v
S EAL. Then Av e EAJ‘.
In other words, Eat is invariant under multiplication by
A.
Proof: Let v € Ea' and let w € Ea.
Thenw =v; + ... + vx Where each v; € Ea(M).
Hence A* w=A* vy + ... + A* v
= MVi+ ...+ MV by Theorem 10.
S EA.
Hence (v | A*w) = 0 and so (Av | w) = 0.
Since this holds for all w € Ea, Av € Eat. % ©

Theorem 14: Suppose that A is a normal matrix. Then
the map f: Ea* — Ea* defined by f (v) = Av is a linear
transformation

Proof: It is the restriction of v — Av to Eat.

The only thing that isn’t obvious is the fact that f (v) e

Eat for all v e Eat, and that was proved in Theorem 13.
%O

Theorem 15: Suppose that A is a normal matrix. Then
EAJ‘ =0.
Proof: Suppose dim(Ex") > 1.
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Then f has at least one eigenvalue A and a corresponding
eigenvector v.

Clearly v € Ea, a contradiction. %©

Theorem 16: Suppose that A is a normal matrix. Then A
is unitarily diagonalisable.

Proof: If A is an n x n matrix then we’ve shown that Ea
= C" and hence C" has an orthonormal basis of
eigenvectors {vi, ..., Vn}.

If U= (v, ..., vy) is the matrix whose columns are the v;
then U is unitary and UAU = D for some diagonal

matrix D. Since U is unitary we can also write U™ as U".
®
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EXERCISES FOR CHAPTER 4

Exercise 1: Which of the following matrices are
diagonalisable over C? Give reasons.
17 -20 -11

O O I A O
14 -18 -9
3 14 -7
0 3 0[;
0 14 -4
37209 5 6 1 -2
9 3 7 2 6 2 4 2
(8)2937’“) 1 40 8
72 9 3 -2 2 8 -1
2 -1 310
1 * * *
Exercise 2: Let A have the form |-1 * =* x x|
1****
-1 * * * *

Suppose that the eigenvalues of A are either 0 or 1. Prove
that A is not diagonalisable.

Exercise 3: Suppose A is a matrix such that A* + A3 + A?
+ A + 1 =0. Show that A is diagonalisable.
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Exercise 4: What is wrong with the following ‘solution’
to the above exercise?

“The zeros of the polynomial A* + A% + A2+ A + 1 are e2™°,
enils g6l e85 \which are all distinct. Therefore if A* +
A3+ A%+ A + | =0 then its eigenvalues are distinct and
hence A is diagonalisable.”

Exercise 5: Suppose A% = A. Show that for all v, A%v — v,
A%v + Av and A%v — Av are all eigenvectors for A. Show
that v e (A%v —v, A%v + Av, A% — Av). Hence show that
A is diagonalisable.

11 -16 8
Exercise 6: LetA:% -16 11 8 |.
8 8 23
-1
(a) Showthat | 2 | is an eigenvector for A.
2

(b) Find the eigenvalues of A.

-1
(c) Extend {( 2 )} to an orthogonal basis of eigenvectors
2

for A.
(d) Write down an orthonormal basis of eigenvectors for
A.

(e) Find an orthogonal matrix Q and a diagonal matrix D
such that A = QDQT
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Exercise 7: Consider the following real matrices:

12
4 7 -1 0 N 0
7 1 2 8 1 1 1 3 5
A= B=| - - -——|;C=
-1 2 2 5 V36 2 (—54]
0 8 5 3 11 1
V3 Ve V2
3 4
HEE ;
5(4 -3
0 5 -8
=|-5 0 1
8 -1 0

For each of these determine which of the four adjectives
REAL-SYMMETRIC, SKEW-SYMMETRIC and
ORTHOGONAL applies.

Exercise 8: Consider the following non-real matrices:
0 1-i  3+5i

A= -1-i 0 4-i |; B:( 3_ 3+4'J; C=
_345i —4-i 0 d-3 3
5 1-i 3+5i
1+i 2 -1+2i|;

3-51 -1-2i 1

C1(1-i 140, E= 3 1-2
2l1-i -1-i) 1+2i -1 )
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For each of these determine which of the four adjectives
NORMAL, HERMITIAN, SKEW-HERMITIAN and
UNITARY applies.

SOLUTIONS FOR CHAPTER 4

Exercise 1: (a) trace = -1, determinant = 2 s0 ¢ (L) = A2 +
A+ 2.

Since this has distinct zeros the matrix has distinct
eigenvalues and so is diagonalisable.

(b) trace = 2, determinant =4 so y(A) = A2 =21 + 4 = (A
— 2)2. If the matrix was diagonalisable it would have to be

[2 0], which it is not.
0 2

(c) Let A be the matrix. Then tr(A) = 2, tro(A) = -15, |A|
=—-36s0
va(h) = A2 — 202 — 15\ + 36

= (AL —3)’(A + 4).

14 -20 -11 7 -9 -6

A -3l =17 -9 -6|] > |14 -20 -11| —
14 -18 -12 14 -18 -12

7 -9 -6

0 -2 1

0 0 O

134



Since there is only one row of zeros, dim EA(3) = 1.
Clearly dim Ea(—4) =1 so dim Ea = 2.

Hence A is not diagonalisable. (The eigenvectors don’t
span R3))

(d) The matrix is cyclic and so it is diagonalisable.
(e) The matrix is real symmetric and so is diagonalisable.

Exercise 2: If A was diagonalisable it would have to
satisfy the equation A2 = A. But the 1-1 component of A?
is 1, not 3.

Exercise 3: A°—1=(A-1)(A*+ A3+ A2+ A+1)=0,5s0
A is a matrix of finite order and hence is diagonalisable.

Exercise 4: The flaw is that although the fifth roots of
unity are distinct, the matrix A might have one of them
repeated.

Exercise 5: A(A%v —v) = A’v — Av
=Av - Av
=0, so A%v — v e Ea(0).
A(A% + Av) = Ady + A%y
= Av + A%y =0, 50 A%V + Av e Ea(1).
A(A% — Av) = Adv — A%y
= Av - A%y
=0, 50 A%V — Av € Ea(-1).
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= — (A%v — V) — ¥ (A%v + AV) — % (A%V — Av).
Since every vector is a linear combination of eigenvectors
A is diagonalisable.

Exercise 6:
11 -16 8)\(-1 -3 -1 -1

@) % -16 11 8 || 2|=]6|=3/2|s0|2]isan
8 8 23)(2 6 2 2

eigenvector for A.

(b) tr(A) = 5; tro(A) = 3; |A| = -9 50 ya(X) =23 - 512 + 3
+9.

We know from (a) that A = 3 is an eigenvalue. We use this
fact to factorise ya(A) as (A — 3)’(A + 1). Hence the
eigenvalues are 3, 3, —1.

11 -16 8 27 0 O

(c) A — 3I :%—1611 8|-|0 27 ol =
8 8 23) (0 0 27
~16 -16 8 2 2 -1
3—16—168 —>1|0 0 0
8 8 -4 00 0
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Let z=2h,y = 2k. Then x = h — 2k and so a vector in
h -2k
Ea(3) has the form | 2k
2h
-1
We want such a vector to be orthogonal to | 2 | so we

require 2k —h + 4k + 4h = 0.
This gives 6k + 3h =0, that is, h = — 2k.

— 4k
Our vector is now | 2k |. Choosing k = %2 gives the
—4k
-2 -1\ (-2
vector | 1 |. So 4| 2 || 1 |} is an orthogonal basis for
-2 2 )\-2
EA(3).
11 -16 8) (9 0 0
A+l=2"16 11 8|+fo 9 0
) 8 8 23/ (0 09
20 -16 8 1 1 4
= Y16 20 8 — 20 -16 8| —
8 8 32 -16 20 8
11 4
01 2
0 0O
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-2
So | 2 | isan eigenvector for A =-1.

1
As expected, it’s orthogonal to the vectors in Ea(3).
-1\ (-2 (-2
Hence 2 L] 1] 2 is an orthogonal basis of
2 )1-2)11

eigenvectors for A.
(d) Each of these vectors has length 3, so

-1 -2 -2
% 2 % 1 % 2 iIs an orthonormal basis of
2 -2 1

eigenvectors.

. -1 -2 =2 300
(e)LetQ:g 2 1 2landD=|0 3 0
2 -2 1 0 0 -1

Then AQ =QD and so A =QDQ ' =QDQ".

Exercise 7:
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12 o)L o1
T — A DDT — —
ATABE SR ® | R T
U U O A U
V3 e V2 J2 2
1 00
010,CT-[: _45}
0 0 1

DDT=D2:i3434
254 -3)\4 -3

I
TN
o
— O
N
m
_|
I

0 -5 8
5 0 -1|=-E.
-8 1 O
A/B|C|D|E
real-symmetric |+ v
skew-symmetric \
orthogonal v v

Exercise 8: A*=A:BB*=B*B = ( 34 21+21'); Cc*

21-21i 34
= C’

DD*—ll_i 1+i \(1+1 1+i ) _(1 0
al1-i —1-iJ\1—-i —1+i 0 1)
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normal

< |0

Hermitian

2210

skew-Hermitian

unitary
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