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4. DIAGONALISATION 

REVISITED 
 

§4.1. Eigenvalues and Eigenvectors 
Recall that an eigenvector v for a matrix A is a non-zero 

vector where Av = v for some scalar . The scalar   is 

called the corresponding eigenvalue. The characteristic 

polynomial of A, denoted by A()  is |I − A| and its 

zeros are precisely the eigenvalues of A. 

 

The r’th trace of the n  n matrix A is the sum of all the 

r  r sub-determinants whose diagonal coincides with that 

of the whole matrix. It is denoted by trr(A) and is the sum 

of 






n

r
  r  r determinants. Special cases are tr1(A), which 

is just the trace, tr(A) and trn(A) which is |A|. 

 

Then A() = 

n − tr(A)n−1 + tr2(A)n−2 − tr3(A)n−4 + ... + (−1)n|A|. 

This is by far the easiest way to compute A(). Solving 

A() = 0 gives the eigenvalues and, for each one, the non-

zero solutions give the corresponding eigenvalues. 

 

If A is an n  n matrix and S = (v1, v2, ..., vn) is an 

invertible matrix whose columns are eigenvectors, where 

Avi = ivi, and D = diag(1, 2, ..., n) then A = SDS−1 and 
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we say that A is diagonalisable. In such cases {v1, v2, ..., 

vn} will be a basis of eigenvectors for A. 

 

We can extend these concepts to linear transformations. 

If f:U → V is a linear transformation between two vector 

spaces, over the field F, and v is a non-zero element of U 

such that f(v) = v for some   F then v is called an 

eigenvector for f and  is the corresponding eigenvalue. 

This agrees with our previous definition by considering 

the linear transformation f(v) = Av, but it makes sense 

when there’s no obvious matrix in the picture. 

 

Example 1: Let U be the set of differentiable functions of 

one real variable x and let V be the space of all real 

functions of one real variable x, both considered as vector 

spaces over ℝ. 

Let D:U→V be the linear transformation D(f(x)) = 
df(x)

dx
 . 

An eigenvector is a function f(x) such that 
df(x)

dx
 = f(x) 

for some   ℝ. Clearly the eigenvectors are the 

exponential functions, or more properly, the non-zero 

multiples of the exponential functions. For any real  the 

functions f(x) = Cex, for any C  0, are eigenvectors for 

D, with the real number  being the corresponding 

eigenvalue. 
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Example 2: Let V be 3-dimensional Euclidean space, 

over ℝ. Let  be any plane in V that passes through the 

origin. Then reflection in  is a linear transformation, M. 

The eigenvalues are 1. 

 

For  = 1 the eigenvectors are the non-zero vectors in  

because these are fixed by the reflection. 

 

For  = −1 the eigenvectors are the non-zero vectors that 

are perpendicular to the plane. 

 

You shouldn’t have your thinking about eigenvalues 

dominated by the equation |I − A| = 0. True, if you’re 

given an n  n matrix, this is usually the best way to find 

its eigenvalues. And once you’ve found the eigenvalues 

you can then find the eigenvectors. But there are some 

matrices where it’s easier to find the eigenvectors first, 

and then the eigenvalues. 

 

But when you have to find the eigenvalues and 

eigenvectors of a linear transformation that isn’t given by 

a matrix then |I − A| won’t make sense. How could you 

use determinants in example 1 or example 2? Of course 

we can always put in a basis, and represent the linear 

transformation by a matrix, but this is a long-winded way 

of going about it. Always think first of the equation f(v) 

= v. 
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If you have a linear transformation f:V → V on a finite-

dimensional vector space V, the nicest basis, if such a 

basis exists, would be a basis of eigenvectors. For, if  = 

{v1, …, vn} is a basis of eigenvectors for the n  n matrix 

A, with corresponding eigenvalues 1, …, n then the 

matrix of f relative to this basis is simply the diagonal 

matrix D = 









1  0  ...  0

0  2 ...  0

...  ... ...  ...

0  0  ... n

 . 

 

But if the linear transformation is f(v) = Av it will be 

expressed in terms of the standard basis . To reach the 

diagonal matrix we simply need a change of basis. 

If S = 









  then 

A = 






f()


  = 










  







f()


 









 
−1

  = SAS−1. 

 

Of course, in order to get a basis of eigenvectors, we need 

to have the full complement of eigenvalues. In other 

words the characteristic polynomial must split completely 

into linear factors over the field. This will always be the 

case if our field is ℂ, the field of complex numbers. But 

even if the characteristic polynomial splits completely we 

may still fail to get a basis of eigenvectors. 
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Example 3: Let A = 






7  2  −1

−3  2  4

−2 −2 11

 . The characteristic 

polynomial is ( − 10)( − 5)2. 

But A − 5I = 






2  2  −1

−3 −3  4

−2 −2  6

  → 






2  2  −1

−3 −3  4

1  1  −3

  → 






1  1  −3

2  2  −1

−3 −3  4

  

→ 






1 1 −3

0 0  5

0 0 −5

  → 






1 1 −3

0 0  1

0 0  0
 so the eigenvectors for  = 5 are 

all scalar multiples of  






1

−1

0
 . The dimension of the space 

of eigenvectors for the eigenvalue 5 is just 1, even though 

5 is a double zero of the characteristic polynomial. The 

space of eigenvectors for  = 10 also has dimension 1. 

Hence there’s no basis of eigenvectors for ℝ3. The 

eigenvectors only span a 2-dimensional subspace. 

 

§4.2. Eigenspaces 
 If  is an eigenvalue for the matrix A then the 

corresponding eigenspace is: EA() = {v | Av) = v}. If 

 is an eigenvalue the dimension of EA() must be at least 

1. The total eigenspace is the space spanned by all the 

eigenvectors and is denoted by EA. 

 We can extend the concept of eigenspaces to linear 

transformations, but for now we’ll concentrate on 

matrices. 
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Theorem 1: The n  n matrix A is diagonalisable if and 

only if dim EA = n. 

Proof: dim EA = n if and only if there is a basis of 

eigenvectors. ☺ 

 

Theorem 2: The total eigenspace is the direct sum of the 

individual eigenspaces. 

Proof: Suppose the distinct eigenvalues of the n  n 

matrix A are 1, …, k. 

For each r let vi  EA(r). Then Avr = rv. 

Suppose v = x1v1 + … + xkvk = 0. 

For each r let: 

Ar = (A − 1I) … (A − r−1I)(A − r+1I) … (A − kI). 

That is, Ar is the product of the factors A − sI for all s 

except for s = r. Then: 

Arv = x1Arv1 + … + xr−1Arvr−1 + xrArvr + … + xkArvr 

       = 0. 

Hence xrArvr = 0 because all the other terms are zero. 

But Arvr = (r − 1) … (r − r−1) (r − r+1) … (r − k)vr 

                0. 

 

It follows that xr = 0. 

Hence EA = EA(1)  …  EA(k). ☺ 

 

Example 4: Let A = 






1  8 −4

8  1  4

−4 4  7

 . 
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A() = |I − A| = ( −9)2( + 9) so the eigenvalues are  

9, with 9 being a repeated eigenvalue. 

 

EA(9) is the null space of 

A − 9I = 






−8  8  −4

8  −8  4

−4  4  −2

 → 






2 −2 1

0  0  0

0  0  0
 . 

Hence EA(9) = 














−

















2

0

1

,

0

1

1

. 

EA(−9) is the null space of 

A + 9I = 






10  8  −4

8  10  4

−4  4  16

 → 






1 −1 −4

5  4  −2

4  5  2

  

                                  → 






1 −1 −4

0  9  18

0  9  18
  → 







1 −1 −4

0  1  2

0  0  0
 . 

Hence EA(−9) = 
















−

1

2

2

. Since 
















0

1

1

, 














−

2

0

1

, 
















−

1

2

2

 are 

linearly independent. The quickest way to show this in 

this case is to observe that 
















−

1

2

2

 is orthogonal to the other 

two and so they are linearly independent and hence 
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EA = EA(9)  EA(−9). Hence EA has dimension 3 and we 

have a basis of eigenvectors. It follows that A is 

diagonalisable. 

 

§4.3. Types of Diagonalisable Matrices 
A square matrix is diagonalisable if and only if it has a 

basis of eigenvectors, or equivalently if every vector is a 

sum of eigenvectors. In many cases it is possible to 

conclude that the matrix is diagonalisable because of 

other properties. 

 

Theorem 3: An n  n matrix is diagonalisable if it has n 

distinct eigenvalues. 

Proof: If the eigenvalues are 1, …, n then: 

EA = EA(1)  …  EA(n) 

and so dim(EA) = n. ☺ 

 

A projection matrix is one that satisfies the equation: 

A2 = A. 

 

Example 5: Suppose that A is a 3   3 real matrix 

satisfying A2 = A. Then it will be the matrix of a 

projection onto a plane in ℝ3. Projecting a point twice will 

be the same as projection it once. 

The eigenvalues of Aare the zeros of 2 − , 

that is, 0 and 1. 

EA(1) is this plane ( points on the plane are fixed by the 

projection). 
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EA(0) is the line perpendicular to that plane. 

 

Theorem 4: Projection matrices are diagonalisable. 

Proof: Let A be a projection matrix. 

Any vector  v  can be expressed as: 

v = (v − Av) + Av. 

Clearly v − Av  EA(0) and Av  EA(1), so the 

eigenvectors span the whole space. ☺ 

 

A matrix  A  has finite order m if Am = I. 

 

Theorem 5: Matrices over ℂ of finite order are 

diagonalisable. 

Proof: Let A be an n  n matrix over ℂ such that Am = I. 

Let  = e2i/m and let v be any vector in ℂn. 

Then 1 + r + 2r + … + r(m−1) is the sum of a geometric 

progression and so, if r  1, this is: 

rm − 1

r − 1
  = 

(m)r − 1

r − 1
 = 0. 

Then mv 

= (v +     Av +       2A2v   + … +   m−1Am−1v) 

+ (v +    2Av +       4A2v   + … + 2(m−1)Am−1v) 

+ ………………………………………………… 

+ (v + m−1Av + 2(m−1)A2v + … + (m−1)2
Am−1v) 

+ (v +    Av      +     A2v        + … +        Am−1v).  

 

This is because the sum of each column, except the first, 

is zero. The sum of the r’th column is 
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(1 + r + 2r + … + r(m−1))Arv = 0 when r > 1. 

 

Now A(v + rAv + 2rA2v + … + (m−1)rAm−1v) 

      = Av + rA2v + … + (m−2)rAm−1v + (m−1)rAmv 

      = Av + rA2v + … + (m−2)rAm−1v + −rv 

      = −rv + Av + rA2v + … + (m−2)rAm−1v 

      = −r(v + rAv + 2rA2v + … + (m−1)rAm−1v). 

Hence each term in the expression for v is an eigenvector, 

and so every vector is a sum of eigenvectors. ☺ 

 

Example 6: If A4 = I show that A is diagonalisable. 

Solution: Every vector can be expresses as 

v = ¼ [(v − Av) + (v − iAv) + (v + Av) + (v + iAv)] 

            EA(1)   +     EA(i)    +  EA(−1)   +   EA(−i). 

 

 The following is an alternative proof of the above 

theorem. It’s interesting that this proof uses some 

elementary calculus, including the Fundamental Theorem 

of Calculus. 

 

Lemma: Let  = e2i/k. 

Then 
1

x − 1
 + 

1

x − 
  + 

1

x − 2  + … + 
1

x − n−1  =  
nxn−1

xn − 1
 . 

Proof: The integral of the LHS is 

log(x − 1) + log(x − ) + log(x − 2) + … + log(x − n−1) 

               = log[(x − 1)(x − )(x − 2) … (x − n−1)] 
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            = log(xn − 1) because of the above factorisation. 

Differentiating we get 
nxn−1

xn − 1
 . 

By the Fundamental Theorem of Calculus the derivative 

of the integral of the LHS is the LHS itself, and so the 

result follows. 

 

For r = 0, 1, 2, … , n −1 define: 

er(x) = 
xn −1

x − r . 

This has degree n − 1 and is the product of the terms x − 

t for all t except for t = r. 

 

Alternative proof of Theorem 5: 

Suppose A is an n  n matrix over ℂ where Am = I. 

The eigenvalues of A are the m-th roots of unity: 

1, , 2, … , m−1 where  = e2i/m. 

From the second lemma we get: 

e0(A) + e1(A) + e2(A) + … + en−1(A) = nAn−1. 

Clearly A is invertible and so: 

nI = A1−n [e0(A) + e1(A) + e2(A) + … + en−1(A)]. 

Let v be any column vector with n components. 

Then (A − rI)(A1−ner(A)v) 

    = A1−n(A − I)(A − I)(A − 2I) … (A − n−1I)v 

    = A1−n(An − 1)v 

    = 0. 
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It follows that, for all r, A1−ner(A)v is an eigenvector for 

the eigenvalue r, or it is zero. 

 

Now nv =  A1−ne0(A)v + A1−ne1(A)v + … + A1−nen−1(A)v 

and so v is a linear combination of eigenvectors for A. 

The eigenvectors thus span the whole space and so A is 

diagonalizable. ☺ 

 

Example 7: Suppose A3 = I. 

The eigenvalues are 1,  and 2. 

                       e0(x) = (x − )(x − 2), 

                       e1(x) = (x − 1)(x − 2) and 

                       e2(x) = (x − 1)(x − ). 

So 3A2 = (A − I)(A − 2I) + (A − I)(A − 2I) 

                                                           + (A − I)(A − I) 

 which means that every vector v can be expressed as 

v = 
1

3
 A(A − I)(A − 2I)v + 

1

3
 A(A − I)(A − 2I)v 

                                                        + 
1

3
 (A − I)(A − I)v. 

 

A cyclic matrix is one of the form 









a1  a2  …  an

an  a1  … an−1

… … …  …

a2  a3  …  a1

  

As you move down the rows, the row moves to the right, 

and wraps around to the beginning. 
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Example 8: 









1  2  3   4

4  1  2   3

3  4  1   2

2  3  4  1 

  is a cyclic matrix. 

 

Theorem 6: Cyclic matrices are diagonalisable. 

Proof: Let A = 









a1  a2  …  an

an  a1  … an−1

… … …  …

a2  a3  …  a1

  and let  = e2i/n. 

Then for all r, 

A











1

r

2r

 …

r(n−1)

 = (a1 + a2r + … + an
r(n−1)) 











1

r

2r

 …

r(n−1)

 . 

It follows that each  











1

r

2r

 …

r(n−1)

 is an eigenvector for A. 

The determinant whose r’th column is 











1

r

2r

 …

r(n−1)

 is a 

Vandermonde determinant V(1, , 2, …, n−1). 
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Since 1, , 2, …, n−1 are distinct this Vandermonde 

determinant is non-zero and so its columns are linearly 

independent. Hence there’s a basis of eigenvectors. ☺ 

 

§4.4. Normal Matrices 
 Let A be a square matrix over ℂ. We define A* to 

be the ‘conjugate-transpose’ of A. That is, if A = (aij) then 

A* = (aji

_
). 

 

Example 9: If A = 






1 + i  2 − i

4 + 3i   6 − 5i 
 find A*. 

Solution: A* = 






1 − i  2 + i

4 − 3i   6 + 5i 

T
 =  







1 − i  4 − 3i

2 + i   6 + 5i 
 . 

 

We call A* the adjoint of A. But beware. There’s another 

‘adjoint’ that’s sometimes used in finding inverses. That 

we denoted by adj(A). 

 

Theorem 7: 

(1) (A + B)* = A* + B*; 

(2) (A)* =A*; 

(3) A** = A; 

(4) (AB)* = B*A*. 

Proof: (1) – (3) are obvious. 

(4) Let A = (aij) and B = (bij). 

Then (AB)* = (AB
___

)T = ( A
__

 B
__

)T = B
__

T A
__

T = B*A*. ☺ 
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If we use the standard inner product on ℂn, where u | v 

= u* v then we have the following fundamental property 

of adjoint. 

 

Theorem 8: Au | v = u | A*v for all u, v. 

Proof: Au | v = (Au)*v = u*A*v = u | A*v. 

 

A normal matrix is a square matrix A, over ℂ, such that 

AA* = A* A. That is, it commutes with its conjugate 

transpose. There are several special types of normal 

matrix. 

 

A Hermitian matrix is one where A* = A. This includes 

real symmetric matrices. Clearly Hermitian matrices are 

normal since A commutes with itself. 

 

A unitary matrix is one whose conjugate-transpose is its 

inverse, that is, A is unitary if A* = A−1, or in other words, 

if AA* = I. Unitary matrices are normal since every 

invertible matrix commutes with its inverse. A real 

unitary matrix is called an orthogonal matrix. Here A−1 

= AT. 

 

The columns of a complex matrix are orthonormal 

(mutually orthogonal and each of unit length) if and only 

if the matrix is unitary (similarly for rows). Hence if a 

matrix A has an orthonormal basis of eigenvectors it is 

diagonalisable. The corresponding eigenmatrix S is 

unitary and so A = SDS*. 
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A matrix A is defined to be skew-Hermitian if A* = −A. 

Clearly skew-Hermitian matrices are normal. A real 

skew-Hermitian matrix is called skew-symmetric. It has 

the property that AT = − A. 

 

We can summarise the definitions of these special types 

of normal matrix as follows. We also provide 2  2 

examples of each. The first example is of a normal matrix 

that doesn’t fit into any of these special categories. 

 

NAME DEFINITION EXAMPLE 

Normal matrix AA* = A*A 







1 + i    0

0     i 
  

Hermitian matrix A* = A 







3  1 −2i

1 + 2i  −1
  

Skew-Hermitian 

matrix 
A* = −A 







3i  1 − 2i

−1 −2i  i 
  

Unitary matrix A* = A−1 









1 + i

2
   

1

2

1 − i

2
   

i

2
 

  

 

For a real matrix we use different names. 
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NAME DEFINITION EXAMPLE 

Real symmetric 

matrix 

AT = A 







3  −2

−2 −1
  

Real skew-

symmetric matrix 
AT = −A 







0 −2

2   0
  

Orthogonal matrix AT = A−1 









1

2
   

1

2

1

2
   − 

1

2
 

  

 

Theorem 9: A square matrix over ℂ is a normal matrix if 

and only if there exists a unitary matrix U and a diagonal 

matrix D such that A = UDU*. 

Proof: Suppose A = UDU*. Then A* = UD*U*. 

So AA* = UDU*UD*U* = U(DD*)U*. 

But D, D* are diagonal matrices so DD* = D*D. 

Hence AA* = U(D*D)U* = (UD*U*)(UDU*) = A*A. 
☺ 

 

We now prove a number of properties of normal matrices. 

Theorem 10: Suppose that A is a normal matrix. Then 

EA()  EA*(
_

). 

Proof: Let v  EA(). 

Then A*v −v | A*v −v = A*v | A*v − v | A*v 

− A*v |v + v |v 
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                                             = v | AA*v −v | A*v − 

A*v | v +v |v 

                                             = v | A*Av −Av | v − 

v | Av +v |v 

                                             = Av | Av −v | v − v 

| v +v |v 

                                             = v | v −v | v 

−v | v +v |v 

                                             =v | v −v | v 

                                             = 0. 

Hence A*v − v = 0 and so v  EA*(
_

). ☺ 

 

Theorem 11: Suppose that A is a normal matrix. Then 

eigenvectors corresponding to different eigenvalues are 

orthogonal. 

Proof: Let v  EA() and w  EA() where   . 

Then v | w = v | w 

                     = Av | w 

                     = v | A*w 

 

                     = v | 
_

w = v | w. 

Since    then v | w = 0. ☺ 

 

Theorem 12: Suppose that A is a normal matrix. Then EA 

has an orthonormal basis of eigenvectors. 

Proof: Let the distinct eigenvectors of A be 1, …, k. 

Then EA = EA(1) + … + EA(k). 
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For each i choose an orthonormal basis for EA(i) and take 

the union of these bases. By Theorem 11 this basis will be 

an orthonormal basis of EA. ☺ 

 

Theorem 13: Suppose that A is a normal matrix and let v 

 EA
⊥. Then Av  EA

⊥. 

In other words, EA
⊥ is invariant under multiplication by 

A. 

Proof: Let v  EA
⊥ and let w  EA. 

Then w = v1 + … + vk where each vi  EA(i). 

Hence A* w = A* v1 + … + A* vk 

                    =1v1 + … +kvk by Theorem 10. 

                     EA. 

Hence v | A*w = 0 and so Av | w = 0. 

Since this holds for all w  EA, Av  EA
⊥. ☺ 

 

Theorem 14: Suppose that A is a normal matrix. Then 

the map f: EA
⊥ → EA

⊥ defined by f (v) = Av is a linear 

transformation 

Proof: It is the restriction of v → Av to EA
⊥. 

The only thing that isn’t obvious is the fact that f (v)  

EA
⊥ for all v  EA

⊥, and that was proved in Theorem 13. 
☺ 

 

Theorem 15: Suppose that A is a normal matrix. Then 

EA
⊥ = 0. 

Proof: Suppose dim(EA
⊥)  1. 



130 

 

Then f has at least one eigenvalue  and a corresponding 

eigenvector v. 

Clearly v  EA, a contradiction. ☺ 

 

Theorem 16: Suppose that A is a normal matrix. Then A 

is unitarily diagonalisable. 

Proof: If A is an n  n matrix then we’ve shown that EA 

= ℂn and hence ℂn has an orthonormal basis of 

eigenvectors {v1, …, vn}. 

If U = (v1, …, vn) is the matrix whose columns are the vi 

then U is unitary and U−1AU = D for some diagonal 

matrix D. Since U is unitary we can also write U−1 as U*. 
☺ 
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EXERCISES FOR CHAPTER 4 
 

Exercise 1: Which of the following matrices are 

diagonalisable over ℂ? Give reasons. 

(a) 








−− 52

114
;  (b) 







 −

11

31
;  (c) 

















−−

−−

−−

91814

667

112017

;  (d) 

















−

−

4140

030

7143

; 

(e) 





















3927

7392

2739

9273

;  (f) 





















−−

−

1822

8041

2426

2165

. 

 

Exercise 2: Let A have the form 























−

−

−

****1

****1

****1

****1

01312

. 

Suppose that the eigenvalues of A are either 0 or 1. Prove 

that A is not diagonalisable. 

 

Exercise 3: Suppose A is a matrix such that A4 + A3 + A2 

+ A + I = 0. Show that A is diagonalisable. 
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Exercise 4: What is wrong with the following ‘solution’ 

to the above exercise? 

“The zeros of the polynomial 4 + 3 + 2 +  + 1 are e2i/5, 

e4i/5, e6i/5, e8i/5, which are all distinct. Therefore if A4 + 

A3 + A2 + A + I = 0 then its eigenvalues are distinct and 

hence A is diagonalisable.” 

 

Exercise 5: Suppose A3 = A. Show that for all v, A2v − v, 

A2v + Av and A2v − Av are all eigenvectors for A. Show 

that v  A2v − v, A2v + Av, A2v − Av. Hence show that 

A is diagonalisable. 

Exercise 6: Let A = 
















−

−

2388

81116

81611

9

1
. 

(a)  Show that 














−

2

2

1

 is an eigenvector for A. 

(b) Find the eigenvalues of A. 

(c) Extend 
















−1

2

2
 to an orthogonal basis of eigenvectors 

for A. 

(d) Write down an orthonormal basis of eigenvectors for 

A. 

 

(e) Find an orthogonal matrix Q and a diagonal matrix D 

such that A = QDQT 



133 

 

Exercise 7: Consider the following real matrices: 

A =





















−

−

3580

5221

8217

0174

; B = 

























−

−−

2

1

6

1

3

1
2

1

6

1

3

1

0
6

2

3

1

; C = 








− 45

53

; D = 








− 34

43

5

1
; 

E = 
















−

−

−

018

105

850

. 

For each of these determine which of the four adjectives 

REAL-SYMMETRIC, SKEW-SYMMETRIC and 

ORTHOGONAL applies. 

 

Exercise 8: Consider the following non-real matrices: 

A = 
















−−+−

−−−

+−

0453

401

5310

ii

ii

ii

;   B = 








−

+

334

433

i

i
;   C = 

















−−−

+−+

+−

12153

2121

5315

ii

ii

ii

; 

D = 








−−−

+−

ii

ii

11

11

2

1
;   E = 









−+

−

121

213

i

i
. 
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For each of these determine which of the four adjectives 

NORMAL, HERMITIAN, SKEW-HERMITIAN and 

UNITARY applies. 

 

 

SOLUTIONS FOR CHAPTER 4 
 

Exercise 1: (a) trace = −1, determinant = 2 so () = 2 + 

 + 2. 

Since this has distinct zeros the matrix has distinct 

eigenvalues and so is diagonalisable. 

 

(b) trace = 2, determinant = 4 so () = 2 − 2 + 4 = ( 

− 2)2. If the matrix was diagonalisable it would have to be 










20

02
, which it is not. 

 

(c) Let A be the matrix. Then tr(A) = 2, tr2(A) = −15, |A| 

= − 36 so 

A() = 3 − 22 − 15 + 36 

         = ( − 3)2( + 4). 

A − 3I = 
















−−

−−

−−

121814

697

112014

 → 
















−−

−−

−−

121814

112014

697

 → 

















−

−−

000

120

697

. 
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Since there is only one row of zeros, dim EA(3) = 1. 

Clearly dim EA(−4) = 1 so dim EA = 2. 

Hence A is not diagonalisable. (The eigenvectors don’t 

span ℝ3.) 

 

(d) The matrix is cyclic and so it is diagonalisable. 

 

(e) The matrix is real symmetric and so is diagonalisable. 

 

Exercise 2: If A was diagonalisable it would have to 

satisfy the equation A2 = A. But the 1-1 component of A2 

is 1, not 3. 

 

Exercise 3: A5 − I = (A − I)(A4 + A3 + A2 + A + I) = 0, so 

A is a matrix of finite order and hence is diagonalisable. 

 

Exercise 4: The flaw is that although the fifth roots of 

unity are distinct, the matrix A might have one of them 

repeated. 

 

Exercise 5: A(A2v − v) = A3v − Av 

                                    = Av − Av 

                                    = 0, so A2v − v  EA(0). 

A(A2v + Av) = A3v + A2v 

                     = Av + A2v = 0, so A2v + Av  EA(1). 

 A(A2v − Av) = A3v − A2v 

                      = Av − A2v 

                      = 0, so A2v − Av  EA(−1). 
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v = − (A2v − v) − ½ (A2v + Av) − ½ (A2v − Av). 

Since every vector is a linear combination of eigenvectors 

A is diagonalisable. 

 

Exercise 6: 

(a) 
















−

−

2388

81116

81611

9

1















−

2

2

1

 = 














−

6

6

3

 = 3














−

2

2

1

 so 














−

2

2

1

 is an 

eigenvector for A. 

 

(b) tr(A) = 5; tr2(A) = 3; |A| = −9 so A() = 3 − 52 + 3 

+ 9. 

We know from (a) that  = 3 is an eigenvalue. We use this 

fact to factorise A() as ( − 3)2( + 1). Hence the 

eigenvalues are 3, 3, −1. 

 

(c) A − 3I  = 

































−
















−

−

2700

0270

0027

2388

81116

81611

9

1  =  

































−

−−

−−

488

81616

81616

9

1
 → 















 −

000

000

122

. 
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Let z = 2h, y = 2k. Then x = h − 2k and so a vector in 

EA(3) has the form 














 −

h

k

kh

2

2

2

. 

We want such a vector to be orthogonal to 














−

2

2

1

 so we 

require 2k − h + 4k + 4h = 0. 

This gives 6k + 3h = 0, that is, h = − 2k. 

  Our vector is now 
















−

−

k

k

k

4

2

4

. Choosing k = ½ gives the 

vector 
















−

−

2

1

2

. So 
































−

−















−

2

1

2

,

2

2

1

 is an orthogonal basis for 

EA(3). 

A + I = 

































+
















−

−

900

090

009

2388

81116

81611

9

1
 

        = 

































−

−

3288

82016

81620

9

1
 → 

















−

−

82016

81620

411

 → 

















000

210

411

. 
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So 














−

1

2

2

 is an eigenvector for  = −1. 

As expected, it’s orthogonal to the vectors in EA(3). 

Hence 






























−

















−

−















−

1

2

2

,

2

1

2

,

2

2

1

 is an orthogonal basis of 

eigenvectors for A. 

(d) Each of these vectors has length 3, so 































−

















−

−















−

1

2

2

3

1
,

2

1

2

3

1
,

2

2

1

3

1
 is an orthonormal basis of 

eigenvectors. 

 

(e) Let Q = 
















−

−−−

122

212

221

3

1
 and D = 

















−100

030

003

. 

Then AQ = QD and so A = QDQ−1 = QDQT. 

 

Exercise 7: 
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AT = A; BBT = 

























−

−−

2

1

6

1

3

1
2

1

6

1

3

1

0
6

2

3

1























−

−−

2

1

2

1
0

6

1

6

1

6

2
3

1

3

1

3

1

 = 

















100

010

001

; CT = 






 −

45

53
; 

DDT = D2 = 








− 34

43

25

1









− 34

43
 = 









10

01
; ET = 

















−

−

−

018

105

850

 = − E. 

 

 A B C D E 

real-symmetric      

skew-symmetric      

orthogonal      

 

Exercise 8: A* = A; BB* = B* B = 








−

+

342121

212134

i

i
; C* 

= C; 

DD* = 








−−−

+−

ii

ii

11

11

4

1









+−−

++

ii

ii

11

11
 = 









10

01
. 
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 A B C D 

normal     

Hermitian     

skew-Hermitian     

unitary     

 


